医用纯水设备
EDI装置将离子交换树脂充夹在阴/阳离子交换膜之间形成EDI单元。EDI组件中将一定数量的EDI单元间用网状物隔开,形成浓水室。又在单元组两端设置阴/阳电极。在直流电的推动下,通过淡水室水流中的阴阳离子分别穿过阴阳离子交换膜进入到浓水室而在淡水室中去除。而通过浓水室的水将离子带出系统,成为浓水. EDI设备一般以反渗透(RO)纯水作为EDI给水。RO纯水电阻率一般是40-2μS/cm(25℃)。EDI纯水电阻率可以高达18 MΩ.cm(25℃),但是根据去离子水用途和系统配置设置,EDI纯水适用于制备电阻率要求在1-18.2MΩ.cm(25℃)的纯水。
EDI技术被制药工业、微电子工业、发电工业和实验室所普遍接受。在表面清洗、表面涂装、电解工业和化工工业的应用也日趋广泛。
医用纯水设备技术本质
连续电除盐(EDI,Electro deionization或CDI,Continuous Electrode ionization),是利用混和离子交换树脂吸附给水中的阴阳离子,同时这些被吸附的离子又在直流电压的作用下,分别透过阴阳离子交换膜而被除去的过程。这一过程中离子交换树脂是被电连续再生的,因此不需要使用酸和碱对之再生。这一新技术可以代替传统的离子交换装置,生产出电阻率高达18MΩ·CM的超纯水。
医用纯水设备技术是水处理工业的革命
与传统的离子交换(DI)相比,EDI所具有的优点:
- EDI无需化学再生
- EDI再生时不需要停机
- 提供稳定的水质
- 能耗低
- 操作管理方便,劳动强度小
- 运行费用低
1.3 EDI过程
一般城市水源中存在的钠,钙,镁,氯化物,硝酸盐,碳酸氢盐等溶解物。这些化合物由带负电荷的阴离子和带正电荷的阳离子组成。通过反渗透(RO)的处理,98%以上的离子可以被去除。RO纯水(EDI给水)电阻率的一般范围0.05-1.0MΩ·CM,即电导率的范围为20-1μS/CM。 根据应用的情况,去离子水电阻率的范围一般为1-18.2 MΩ·CM。另外,原水中也可能包括其它微量元素,溶解的气体(例如CO2)和一些弱电解质(例如硼,二氧化硅),这些杂质在工业除盐水中也必须被除掉。但是反渗透过程对于这些杂质的清除效果较差。
离子交换膜和离子交换树脂的工作原理相近,可以使特定的离子迁移。
阴离子交换膜只允许阴离子透过,不允许阳离子透过;而阳膜只允许阳离子透过,不允许阴离子透过。在一对阴阳离子交换膜之间充填混合离子交换树脂就形成了一个EDI单元。阴阳离子交换膜之间由混合离子交换树脂占据的空间被称为淡水室。将一定数量的EDI单元罗列在一起,使阴离子交换膜和阳离子交换膜交替排列,并使用网状物将每个EDI单元隔开,形成浓水室。在给定的直流电压的推动下,在淡水室中,离子交换树脂中阴阳离子分别在电场作用下向正/负极迁移,并透过阴阳离子交换膜进入浓水室,同时给水中的离子被离子交换树脂吸附而占据由于离子电迁移而留下的空位。事实上离子的迁移和吸附是同时并连续发生的。通过这样的过程,给水中的离子穿过离子交换膜进入到浓水室被去除而成为除盐水。
带负电荷的阴离子(例如OHˉ,CIˉ)被正极(+)吸引而通过阴离子交换膜,进入到邻近的浓水室中。此后这些离子在继续向正极迁移中遇到邻近的阳离子交换膜,而阳离子交换不允许其通过,这些离子即被阻隔在浓水中。淡水流中的阳离子(例如Na+,H+)以类似的方式被阻隔在浓水中。在浓水中,透过阴阳离子维持电中性。
EDI组件电流量和离子迁移量成正比,电流量由两部分组成,一部分源于被除去离子的迁移,另一部分源于水本身电离产生的H+和OH-离子的迁移。
在EDI组件中存在较高的电压梯度,在其作用下,水会电解产生大量的H+和OH-。这些就地产生的H+和OH-对离子交换树脂进行连续再生。
EDI组件中的离子交换树脂可以分为两部分,一部分称作工作树脂,另一部分称作抛光树脂。二者的界限称为工作前沿。工作树脂主要起导电作用,而抛光树脂在不断交换和被连续再生。工作树脂承担着除去大部分离子的任务,而抛光树脂则承担着去除象弱电解质等较难清除的离子的任务。
EDI给水的预处理是EDI实现其优性能和减少设备故障的首要的条件。给水时在的污染物会对除盐组件有负面影响,增加维护量并降低膜组件的寿命。
医用纯水设备的应用领域
医用纯水设备经常用于微电子工业,半导体工业,发电工业,制药行业和实验室。EDI纯水也可以作为制药蒸馏水,食物和饮料生产用水,发电厂的锅炉补给水,以及其它应用超纯水。
EDI组件单件流量范围从0.5m3/hr到3.5m3/hr。每个组件都有一个推荐的流量范围。组件并行排列可以产生一个几乎无限规模的系统。根据给水和运行的条件,组件可生产出电阻率达10—18.2MΩ·cm的纯水。
上一篇:工业纯水设备
下一篇:反渗透设备预处理石英砂过滤器